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Abstract

Background: Mouse clinical trials (MCTs) are becoming wildly used in pre-clinical oncology drug development, but
a statistical framework is yet to be developed. In this study, we establish such as framework and provide general
guidelines on the design, analysis and application of MCTs.

Methods: We systematically analyzed tumor growth data from a large collection of PDX, CDX and syngeneic
mouse tumor models to evaluate multiple efficacy end points, and to introduce statistical methods for modeling
MCTs.

Results: We established empirical quantitative relationships between mouse number and measurement
accuracy for categorical and continuous efficacy endpoints, and showed that more mice are needed to
achieve given accuracy for syngeneic models than for PDXs and CDXs. There is considerable disagreement
between methods on calling drug responses as objective response. We then introduced linear mixed models
(LMMs) to describe MCTs as clustered longitudinal studies, which explicitly model growth and drug response
heterogeneities across mouse models and among mice within a mouse model. Case studies were used to
demonstrate the advantages of LMMs in discovering biomarkers and exploring drug’s mechanisms of action.
We introduced additive frailty models to perform survival analysis on MCTs, which more accurately estimate
hazard ratios by modeling the clustered mouse population. We performed computational simulations for
LMMs and frailty models to generate statistical power curves, and showed that power is close for designs
with similar total number of mice. Finally, we showed that MCTs can explain discrepant results in clinical
trials.

Conclusions: Methods proposed in this study can make the design and analysis of MCTs more rational,
flexible and powerful, make MCTs a better tool in oncology research and drug development.

Keywords: PDX, CDX, Syngeneic model, Mouse clinical trials, Linear mixed models, Survival analysis, Statistical
power, Biomarker

Background
Cancer is a heterogeneous disease with intra- and inter-
tumor genomic diversity that determines cancer initi-
ation, progression and treatment. The understandings of
cancer biology and the development of therapeutics have
been aided greatly by a variety of mouse tumor models,

including cell line-derived xenografts (CDXs), patient
derived-xenografts (PDXs), genetically engineered mouse
models (GEMMs), cell line- or primary tumor-derived
homografts in syngeneic mice and so on (reviewed by
[1–4]). These models differ in their generation, host and
tumor genomics and biology, availability, and research
utilizations. For example, immunotherapies are tested in
immunocompetent models such as GEMMs and syngen-
eic models.
Past decades witnessed the accelerated creation, distri-

bution, profiling and characterization of mouse tumor
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models [5–10]. The abundant collections made it pos-
sible to conduct the so-called “mouse clinical trials
(MCTs)”, in which a panel of mouse models, dozens to
hundreds, are used to evaluate therapeutic efficacy, dis-
cover/validate biomarkers, study tumor biology and so
on. MCTs demonstrated faithful clinical predictions in
multiple studies [6, 11–15]. While most reported MCTs
used PDXs, MCTs using other mouse models, such as
syngeneic models, are now widely performed as well.
Because of their resemblance to clinical trials, MCTs

are often analyzed by methods for clinical trials. For ex-
ample, overall survival (OS) and progression-free sur-
vival (PFS) are estimated by tumor volume increase,
Cox proportional hazards models are used for survival
analysis, response categories are defined by tumor vol-
ume change and objective response rate (ORR) is calcu-
lated [6, 13, 16]. However, MCTs differ from clinical
trials in many ways. (1) In an oncology clinical trial, a
patient is enrolled in only one arm, while in a MCT,
multiple mice bearing tumor from the same mouse
model are made so that mice can be placed in all arms.
Mice from the same mouse model capture intra-tumor
heterogeneity for tumor growth and drug response, and
mice from different mouse models capture inter-tumor
heterogeneity. Measurement error can be quantified
when multiple mice are used in each arm. Furthermore,
since there are mice of same mouse models in both
arms, they themselves can serve as control across arms
for better measurement of drug efficacy. (2) tumor vol-
umes are routinely measured every few days; (3) mouse
models are usually characterized with genomic/
pharmacology/histopathology annotations; (4) MCTs
are done in labs that reduces/removes various noise
and inconvenience encountered in clinical trials, such as
dropouts, long trial time and concomitant medication.
In this study, we combine empirical data analysis, stat-

istical modeling and computational simulations to ad-
dress some key issues for MCTs, including the
determination of animal numbers (number of mouse
models and number of mice per mouse model), statis-
tical power calculation, quantification of efficacy differ-
ence between mice/mouse models/drugs, survival
analysis, biomarker discovery/validation with and be-
yond simple efficacy readouts, handling of mouse drop-
outs, missing data and difference in tumor growth rates,
study of mechanisms of action (MoA) for drugs. We will
also show MCTs can explain discrepant clinical trial
results.

Methods
Mouse models, studies and transcriptomic profiling
The establishment of mouse models and the conduct
of mouse efficacy studies were described previously
[17–19]. Briefly, for PDX models, freshly resected

patient tumors were sliced into roughly 3 × 3 × 3 mm3

chunks and engrafted subcutaneously on the flanks of
immunocompromised mice (BALC/c, NOD/SCID,
NOG, etc.). Tumor growth was monitored by a caliper twice
a week to establish the first passage of a PDX model. Tumor
was harvested for next round of engraftment when it
reached 500–700mm3 (1/2length ×width2). A series of en-
graftment produced subsequent passages of the model. For
CDX and syngeneic models, cell suspension (0.1–5 × 106

cell/mouse) was injected into immunocompromised mice
and immunocompetent mice (C57BC/6, BALB/c, etc.), re-
spectively, to induce tumor. Pharmacological dosing started
when a tumor was normally 100-300mm3, tumor volume
was measured twice a week until the tumor was
reaching 3000mm3, by then the mouse was eutha-
nized. All animal studies were conducted at Crown
Bioscience SPF facility under sterile conditions and
were in strict accordance with the Guide for the Care
and Use of Laboratory Animals of the National Insti-
tutes of Health. Protocols of all studies were approved
by the Committee on the Ethics of Animal Experi-
ments of Crown Bioscience, Inc. (Crown Bioscience
IACUC Committee). Mouse models and cell lines
were profiled by RNA-seq on Illumina HiSeq series
platforms by certified service providers, as previously
described [7].

Categorical efficacy endpoints in mouse studies
Four categorical endpoint methods were evaluated, in-
cluding the Response Evaluation Criteria In Solid Tu-
mors (RECIST) criteria [20], a 3-category or 3-cat
method [13], the 4-response mRECIST criterion [6], and
a 5-category or 5-cat method [16]. Briefly, the RECIST-
based criterion categorizes drug responses into complete
response (CR), partial response (PR), stable disease (SD)
and progressive disease (PD) based on relative tumor
volume, or RTV, at a later day relative to treatment initi-
ation day (CR: RTV = 0, PR: 0 < RTV ≤ 0.657, SD:
0.657 < RTV ≤ 1.728, PD: RTV > 1.728). Metastasis is not
considered because it rarely occurs in subcutaneous
implantation. The 3-cat method classifies response
into PD, SD and objective response (OR) based RTV
as well (OR: RTV ≤ 0.65, PD: RTV ≥ 1.35, SD: 0.65 <
RTV < 1.35). The mRECIST method considers tumor
growth kinetics 10 days after treatment initiation and
classifies responses into CR, PR, SD and PD using
two RTV-based quantities: best response and best
average response. The 5-cat method classifies re-
sponses into maintained CR (MCR), CR, PR, SD and
PD based on RTV (PD: RTV > 0.50 during the study
period and RTV > 1.25 at end of study, SD: RTV >
0.50 during the study period and RTV ≤ 1.25 at end
of study, PR: 0 < RTV ≤ 0.50 for at least one time
point, CR: RTV = 0 for at least one time point, MCR:
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RTV = 0 at end of study). In the definitions of MCR
and CR, we also use RTV = 0 to designate disappear-
ance of measurable tumor mass to replace the con-
vention (TV < 0.10 cm3) used in Houghton et al.,
2007. For all 4 methods, the admissive initial tumor
volume is 50~300mm3. Objective response is defined
as OR, CR + PR, MCR + CR + PR in the 3-cat,
RECIST/mRECIST and 5-cat methods, respectively.

Continuous efficacy endpoints in mouse studies
We briefly describe 4 continuous endpoints here. (a)
Progression-free survival (PFS) is defined as tumor vol-
ume doubling time and obtained by linear intrapolation
on tumor growth data. Specifically, if the PFS is between
day d1 and day d2, then it is d1 + (d2 − d1)(2TV0 − TV1)/
(TV2 − TV1) where TV1, TV2 and TV0 are tumor vol-
umes at d1, d2 and treatment initiation day. (b) RTV ra-
tio is the ratio of RTV between drug group and vehicle
group at a specific day d and equals RTVt /RTVc, where
RTVt is the relative tumor volume between day d and
treatment initiation day for the drug treatment group,
and RTVc is accordingly defined for the vehicle
group. (c) Tumor growth inhibition (TGI) has several
definitions, it can be defined as 1- RTVt /RTVc, or as
1-ΔT/ΔC where ΔT and ΔC are tumor volume
changes relative to initial volume for drug group and
vehicle group, respectively, at a specific day. (d) The
ratio of growth rates between drug group and vehicle
group is defined as kt /kc where kt and kc are the
growth rates obtained by modeling tumor growth data
for the two groups by Eq. 1. More general, we can
introduce a new endpoint called AUC ratio, which re-
duces to ratio of growth rates when tumor grows
under exponential kinetics (Fig. S5). Unique treatment
models with at least 10 mice were used to calculate
continuous endpoints, including 621 unique treated
PDXs, 739 CDXs and 438 syngeneic models.

Modeling tumor growth
Tumor growth under exponential kinetics is modeled by

TVd ¼ TV 0e
kd ð1Þ

Where TV0 is the initial tumor volume, TVd is the
tumor volume at day d, and k is the tumor growth rate.
A logarithmic transformation gives

lnTVd ¼ ln TV 0ð Þ þ kd ð2Þ

Linear mixed models for the cisplatin dataset
A general model can be specified for tumor volume, in
log scale, at day t for mouse i within PDX j as follows:

logTV tij ¼ β0 þ β1 � Dayt þ β2 � Dayt
� CancerTypeGAj þ β3 � Dayt
� CancerTypeLU j þ β4 � Dayt
� Treatmentij þ β5 � Dayt
� CancerTypeGAj � Treatmentij
þ β6 � Dayt � CancerTypeLU j

� Treatmentij þ u0 j þ u1 j � Dayt
þ u 0ij jð Þ þ u 1ij jð Þ � Dayt þ εtij ð3Þ

LU is lung cancer, GA is gastric cancer and ES is
esophageal cancer. The model uses vehicle in ES as the
reference. There are 6 fixed effects: β0 for the intercept,
β1 for the time slope, β2 and β3 quantify the growth rate
difference of GA and LU with respect to ES, β4 measures
cisplatin effect, β5 and β6 measures if GA and LU re-
spond differently to cisplatin. The model also has 5 ran-
dom effects, including the residual εtij. In a MCT, we
view the cohort of PDXs as random samples from a
PDX or patient population, therefore, they have different
growth rates, which is modeled by random effect u1j as-
sociated with the time slope. Similarly, we model growth
difference for mice within a PDX by the random effect
u1i ∣ j. Mice and PDX may have different starting tumor
volumes, modeled by the two random effects on inter-
cept u0j and u0i ∣ j.

Power calculation based on computational simulation
Power calculation was based on parameters (e.g., vari-
ance and covariance of random effects) estimated from
fitting the cisplatin dataset by a LMM:

logTV tij ¼ β0 þ β1 � Dayt þ β2 � Dayt
� Treatmentij þ u0 j þ u1 j � Dayt
þ u 0ij jð Þ þ u 1ij jð Þ � Dayt þ εtij ð4Þ

At significance level α = 0.05, we obtained power
curves by simulations for β2/β1 = − 0.1 to − 0.9, that is,
drug treatment reduces tumor growth rate by 10 to 90%.

Additive frailty models for survival analysis
In the additive frailty model, the hazard function for the
j-th mouse of the i-th mouse model is given by
hij(t) = h0(t) exp(ui + (w + vi)Tij + βTXi) (5)
where h0(t) is the baseline hazard function. Parameter

ui is the random effect (the first frailty term) associated
with the i-th mouse model that captures its characteris-
tic growth, thus survival behavior, without drug treat-
ment. Parameter vi is the random effect (the second
frailty term) associated with the i-th mouse model that
depicts its drug response. Parameter w measures the
drug treatment effect on all mouse models. Tij is the
treatment variable and equals 0 for the vehicle treatment
and 1 for the drug treatment; Xi is a vector for the
mouse model’s covariates, e.g., cancer type and genomic

Guo et al. BMC Cancer          (2019) 19:718 Page 3 of 14



features; βT is the parameter vector quantifying the fixed
effects of the covariates. The two random effects ui and
vi assume a bivariate normal distribution with zero
means, variance σ2 and τ2, and covariance ρστ. If the
two random effects ui and vi are removed, the model re-
duces to the Cox proportional hazards model. Model fit-
ting was done by the R package frailtypack (version
2.12.6), assuming Weibull distribution for the hazard
function [21].

Linear mixed models for the biomarker discovery
The following LMM is used for single-gene biomarker
discovery by fitting efficacy data from a MCT:

logTV tij ¼ β0 þ β1 � Dayt þ β2 � Dayt
� Gene j þ β3 � Dayt � Treatmentij
þ β4 � Dayt � Genej � Treatmentij
þ u0 j þ u1 j � Dayt þ u 0ij jð Þ þ u 1ij jð Þ
� Dayt þ εtij ð6Þ

In this model, Gene is a covariate for the genomic sta-
tus (expression, mutation, copy number variation, etc.)
of a gene.

Gene list enrichment analysis
A list of top ranked genes were used as input to the Enrichr
web server (http://amp.pharm.mssm.edu/Enrichr/) for their
enrichment in the “Reactome 2016” pathway database and
in the “GO Biological Process 2018” database [22]. Adjusted
p-values were used to rank enriched pathways and bio-
logical processes.

Protein-protein interaction network analysis
A list of top ranked genes were analyzed for protein-
protein interactions in the STRING database (version
10.5 at https://string-db.org) [23]. Default settings were
used except the value for “minimum required interaction
score” changed from “medium confidence (0.400)” to
“high confidence (0.700)”.

Results
Determining number of mice for categorical responses
We collected tumor volume data under drug treatment
for 26127 mice from 2883 unique treatment PDXs,
11139 mice from 1219 unique treatment CDXs, and
5945 mice from 637 unique treatment syngeneic models.
A unique treatment model is a mouse model treated by
a drug in a study. Every unique treatment has at least 8
mice. Categorical drug response was determined by 4
methods (see Materials and Methods), and we illustrate
the results using the mRECIST criteria, which classifies
drug response into 4 categories: complete response (CR),
partial response (PR), stable disease (SD), and progres-
sive disease (PD). For each unique treatment model, its

response is the majority response of all mice. We ob-
served that individual mouse responses matched the ma-
jority response most often for PD: 90% for PDXs, 95%
for CDXs and syngeneic models (Fig. 1a-c). The other 3
response categories exhibit lower concordance, particu-
larly so for syngeneic models. Of the 10 unique treat-
ment syngeneic models classified as CR, only half of the
mice had complete response as well, while 17% of mice
were PD and resistant to treatment. Such polarized re-
sponse pattern is observed in the other 3 methods, too
(Additional file 1: Figure S1-S3). Large variance exists
for all 4 response categories. For example, only about
70% of individual responses matched the majority re-
sponse for a third of the 107 unique treatment PDX
models categorized as CR, although the average is 83%.
Measurement accuracy increases with number of mice.

We randomly sampled n (n = 1, 3, 5, 7) mice from all
the mice in a treatment and obtained a majority re-
sponse, which was then compared with the actual major-
ity response. The procedure was repeated for 1,000
times to generate statistical results (Fig. 1d-f ). Accuracy
increases with mouse number for all 4 categories, and
their unweighted average is highest in CDXs, which is
slightly higher than PDXs, while syngeneic models have
much lower accuracy (Fig. 1g). Therefore, more mice are
needed for syngeneic models to achieve similar accuracy
as PDXs/CDXs. For example, accuracy is comparable be-
tween syngeneic studies with 5 mice per model and
PDX/CDX studies with 1 mouse per model. Similar pat-
terns are also seen in the other 3 methods (Additional
file 1: Figure S1-S3).
All the 4 methods categorize responses based on relative

tumor volume (RTV) at a later day to treatment initiation
day, but differ in specific thresholds. As such, a unique
treatment model can be categorized differently. We
found that there is a good overlapping for unique
treatment models classified as objective response be-
tween the 4 methods (Fig. 1h-j), and their objective
response rates (ORR) are similar. (Additional file 1:
Table S1). Nevertheless, there are many models only
unique to some methods as OR, cautioning method-
specific bias and applicability. For example, the mRECIST
considers averaging tumor reduction for a period of time,
therefore, a unique treatment model can be classified as
PD even though tumor completely disappears at end of
study (Additional file 1: Figure S4).

Determining number of mice for continuous responses
Drug efficacy can be measured by continuous responses,
some are direct adaption of clinical endpoints (e.g., PFS
and OS), others are unique to mouse studies that use
data from both vehicle and drug treatment groups (e.g.,
RTV ratio between drug and vehicle groups). We calcu-
lated the estimation errors of PFS and RTV ratio
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computed from n (n = 1 to 9) mice randomly sampled
from the ≥10 mice in a study, and obtained the quantita-
tive relationship between estimation errors and mouse
numbers (Fig. 2). For each n, we obtained the empirical

cumulative density function (ECDF) with respect to per-
centage error of PFS estimate for PDX, CDX and syn-
geneic models (Fig. 2a-c), and with respect to the
absolute error of RTV ratio estimate for the three types

Fig. 1 Mouse number and measurement accuracy of categorical responses defined by the mRECIST criteria. (a-c): individual mouse response and
majority response in PDX (a), CDX (b) and syngeneic models (c), x axis is the number of majority response from 4 response categories (CR:
complete response, PR: partial response, SD: stable disease, PD: progressive disease.), y axis is the percentage of individual mouse response
relative to the majority (average ± s.d.). There are 26,127 mice in 2,883 unique treatment PDX models, 11,139 mice in 1,219 unique treatment CDX
models, and 5,945 mice in 637 unique treatment syngeneic models. Each unique treatment model had at least 8 mice. (d-g): measurement
accuracy increases with number of mice for PDX (d), CDX (e) and syngeneic models (f). For each unique treatment model, the majority response
of n (n = 1, 3, 5, 7 in x axis) randomly sampled mice was obtained to see if it agreed with the actual majority response. The procedure was
repeated 1,000 times to obtain the accuracy—percentage of times (average ± s.d.) that they agreed—for the 4 response categories, whose
unweighted average is shown in (g). (h-j): Venn diagram showing the overlap of unique treatment PDX models classified as objective response
by 4 categorical methods in PDX (h), CDX (i), and syngeneic models (j). Objective response is OR in the 3-cat method, CR + PR in the mRECIST
and RECIST methods, MCR + CR + PR in the 5-cat method
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of models (Fig. 2e-g). Large estimation errors are inher-
ent to small sample sizes, particularly so for syngeneic
models. For example, percent error of PFS is greater
than 20% for 63% syngeneic mice and for about half of

PDX/CDX mice (Fig. 2d). Estimation errors are reduced
sharply by addition of more mice when n is small. For
RTV ratio, 3 mice in both drug and vehicle group
already lift mice with absolute error < 0.2 from 60% to

Fig. 2 Determining mouse numbers for continuous responses. (a-c): Progression-free survival, or PFS, calculated from n mice (n = 1 to 9)
randomly sampled from a unique treatment model with at least 10 mice shows relative deviation to the PFS calculated from all mice in PDX (a),
CDX (b), and syngeneic models (c), x axis is the percent error of PFS, and y axis is the empirical cumulative density function (ECDF) estimated
from the random samplings for each n. Percent error of PFS decreases with increased number of mice, and the error is larger for syngeneic
models than PDXs/CDXs. (d): Percentages of unique treatment models with percent error less than 20% in the 3 types of mouse models. (e-g):
RTV ratio between drug and vehicle groups, calculated from n mice (n = 1 to 9) randomly sample from a study with at least 10 mice in both drug
and vehicle groups, shows deviation to the RTV ratio calculated from all mice in both groups in PDX (e), CDX (f), and syngeneic models (g), x axis
is the absolute error, and y axis is the empirical cumulative density function (ECDF) estimated from the random samplings for each n. Absolute
error of RTV ratio decreases with increased number of mice, and the error is larger for syngeneic models than PDXs/CDXs. (h): Percentages of
studies with absolute error less than 0.2 in the 3 types of mouse models
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above 80% for PDXs/CDXs (Fig. 2h). Similar results hold
for other continuous endpoints as well (Additional file 1:
Figure S5).

Modeling MCTs as clustered longitudinal studies
It is convenient to measure drug efficacy by a categorical
or continuous endpoint, but those approaches also suffer
from loss of information and other drawbacks. For ex-
ample, it is somewhat arbitrary to choose a day to calcu-
late RTV ratio and TGI; it adds logistic burden to match
mice with comparable tumor volume at treatment initi-
ation day [24]; it is difficult to deal with mouse dropouts.
These shortcomings can be overcome by modeling
MCTs as clustered longitudinal studies, in which a clus-
ter is consisted of all mice of a mouse model so they
share genomic profile and have more similar drug re-
sponse. Each mouse is in a longitudinal study. It can be
shown that tumor growth in majority of mice follows ex-
ponential kinetics (Additional file 1: Figure S6). There-
fore, we can model the clustered longitudinal studies by
a 3-level linear mixed model (LMM) on the log-
transformed tumor volumes (logTV) and day (Fig. 3a).
There are covariates associated with mouse models such
as cancer type and genomic features, which can be used
for examining efficacy difference on cancers and for dis-
covering predictive biomarkers.
We use one example to demonstrate the modeling of

MCTs by LMMs for efficacy evaluation and comparison.
In this MCT, cisplatin—a chemotherapy drug—was ad-
ministrated to 42 PDXs (4 mg/kg, weekly dosing for 3
weeks), including 13 esophageal cancers (ES), 21 gastric
cancers (GA) and 8 lung cancers (LU), each PDX with 5
to 9 mice (Additional file 1: Figure S7). We fit the effi-
cacy data by a LMM (Eq. 3 in Materials and Methods),
which explicitly models tumor growth rate heterogeneity
and drug response heterogeneity at both PDX level and
mouse level. Model fitting is satisfactorily (Table 1,
Additional file 1: Figure S8). We conclude that (1) under
vehicle treatment, tumor in GA grows slightly faster
than ES, while tumor growth is much faster in LU; (2)
cisplatin has comparable efficacy on the 3 cancers (p-
values for β5 and β6 are > 0.05). The results can be read-
ily visualized from the mean growth curves for the 3
cancers under (Fig. 3b).

Statistical power and sample size determination in MCTs
Much like clinical trials, rational design of MCTs re-
quires statistical power calculation and sample size de-
termination—number of mouse models and number of
mice per mouse model. We demonstrate this under the
LMM framework with the following assumptions (1) a
balanced n:n design in which there are n (≥1) mice in
both drug and vehicle groups, and (2) a 21-day trial with
tumor volume measured at treatment initiation and then

twice every week to produce 8 data points for every
mouse. Drug efficacy is measured by how much drug
treatment slows down tumor growth (β2/β1 in Eq. 4).
Power curves were obtained by computational simula-
tions based on parameters obtained from fitting the cis-
platin dataset by Eq. 4 (Fig. 3c).
We observed that if the number of PDXs is the same,

more mice per PDX confer better statistical power. For
example, to achieve 80% power, we need about 28 PDXs
for the 1:1 design (1 mouse each in the vehicle and drug
treatment groups), and 11 PDXs for the 3:3 design (3
mice each in the vehicle and drug treatment groups).
More importantly, statistical power is comparable for
designs with similar number of total mice. For example,
when the drug efficacy is 20%, that is, the drug reduces
tumor growth rate by 20%, the following designs all
achieve 90% power at 0.05 significance level: 36 PDX
with 1:1 design, 19 PDXs with 2:2 design, 13 PDXs with
3:3 design, 10 PDXs with 4:4 design, and so on. How-
ever, it is important to note that such designs with simi-
lar statistical power and total number of mice have
different biological implications. A design with a larger
number of PDX but fewer mice or even one mouse per
PDX can give better representation and measurement of
inter-tumor heterogeneity, while a design with a smaller
number of PDX but more mice per PDX sacrifices such
inter-tumor heterogeneity to give more accurate meas-
urement of drug efficacy for each PDX. It depends on
study aims to choose a design. For example, we likely
prefer a design with more PDX each with fewer mice for
biomarker discovery because it would give us a broader
representation of inter-tumor heterogeneity and more
genomic datasets to work with. In the extreme case, we
can use the 1:1 design if there are many PDXs at dis-
posal—the 1x1x1 approach [6], in which Gao et al.
showed that the 1:1 design is effective in biomarker as-
sessment and efficacy evaluation. But for biomarker val-
idation, we may use a design with a limited number of
selected PDX models that are predicted to be responsive
or resistant, and each PDX should have a relatively high
number of mice so that the efficacy measurement is ac-
curate enough to gauge the effectiveness of the bio-
marker. The design also are constrained by available
resource, for example, when there is only a limited num-
ber of suitable PDXs, e.g., PDXs carrying a particular
mutation or PDXs of a specific subtype, we can increase
the number of mice per PDX to boost statistical power.
We also observed that fewer PDXs are needed for a

more potent drug to reach same statistical power. For
example, to achieve 80% statistical power at 0.05 signifi-
cance level by the 3:3 design, we need about 40, 11, and
5 PDXs for drugs with 10, 20, and 30% efficacy, respect-
ively. When a drug is potent enough, all n:n designs
achieve high power with very small number of PDXs. In
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such cases, we use a good number of PDXs not for stat-
istical power but for better representation of tumor
heterogeneity.

Survival analysis in MCTs
In clinical trials, patient survival is usually assumed to
be independent of each other. In MCTs, this assumption

no longer holds because mice are now clustered within
PDXs, and mice of same PDX tend to have more similar
survival time, while their survival time between treat-
ments is highly correlated (Fig. 4a). Further, PDXs can
vary greatly in growth rate (or hazard) and drug re-
sponse (Additional file 1: Figure S9). Therefore, we use
an additive frailty model to model the heterogeneity on

Fig. 3 Linear mixed models (LMMs) can be used to model the clustered longitudinal data from MCTs. (a) the structure of the clustered
longitudinal data for a PDX in a MCT. PDX level and mouse level covariates can be incorporated into LMMs. (b) Mean tumor growth curves for 3
cancers under vehicle treatment and cisplatin treatment. (c) Statistical power curves of the cisplatin MCT. Power is calculated at significance level
α = 0.05 when the cisplatin treatment reduces tumor growth rate by 10 to 90%, i.e. β1/β2 = − 0.1 to − 0.9 in Eq. 4 in Materials and Methods. The
10 colored curves in each graph denote the number of mice for every PDX in each arm
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hazard and drug efficacy under the clustered population
structure of MCTs (see Eq. 5 in Materials and Methods).
The additive frailty model is an extension of the Cox
proportional hazards model wildly used in clinical trials.
It has two frailty terms, the first one ui quantifies PDX
growth rate heterogeneity and the second one vi mea-
sures drug response heterogeneity.
We use the cisplatin MCT to illustrate the

utilization of the additive frailty model. Overall sur-
vival (OS) is defined as tumor volume tripling time.
We fit the cisplatin MCT dataset by Eq. 5, and ob-
served that both frailty terms are significant larger
than 0 (Wald test p-value< 0.05), proving that the
PDXs grow at different rate and had different re-
sponses to cisplatin. In fact, the first frailty term ui is
negatively correlated with tumor growth rate in the
vehicle group, as expected (R2 = 0.85, Fig. 4b).
Drug efficacy can be estimated more accurately by ex-

cluding the influence of tumor growth heterogeneity and
considering drug response heterogeneity, which is mea-
sured by the second frailty term vi. Indeed, the hazard
ratio (HR) is estimated to be 0.21 (95% CI: 0.15–0.31),
much smaller than that obtained from the Cox propor-
tional hazards model, which gives HR = 0.36 (95% CI,
0.28–0.46) (Fig. 4c). These results show that without
considering PDX heterogeneity, drug effect can be se-
verely misestimated.
We performed statistical power analysis for the sur-

vival analysis by assuming the n:n designs and using pa-
rameters estimated from the cisplatin MCT with
Weibull hazard functions (Fig. 4d). Like in LMMs, statis-
tical power is similar for designs with similar total num-
ber of mice.

Biomarker discovery in MCTs
Genomic correlation to cetuximab efficacy in solid tu-
mors has been well documented [13], and we previ-
ously reported a MCT for a cohort of 20 gastric
cancer PDXs, each with 3–10 mice in the vehicle and
cetuximab treatment arms. We found that EGFR ex-
pression to be a predictive biomarker for cetuximab

on gastric cancer [19]. The cohort is now expanded
to 27 PDXs (Additional file 1: Figure S10). We ob-
served a strong correlation between EGFR expression
and drug efficacy measured by tumor growth inhib-
ition or TGI (Fig. 5a). When all 18586 genes were
ranked from high to low by the absolute value of cor-
relation coefficient between their expression and TGI,
EGFR is ranked 157 out of all these genes, demon-
strating that such simple methods in biomarker dis-
covery can yield many false positives with seemingly
better predictivity than the true biomarker.
We used a LMM that explicitly models a gene’s ef-

fect on tumor growth to fit the efficacy data (Eq. 6 in
Materials and Methods). EGFR stands out as the most
significant gene and its p-value, being1.5 × 10− 23, is at
least five orders of magnitude smaller than all other
genes (Fig. 5b). EGFR as a predictive biomarker for
cetuximab on gastric cancer is supported by a phase
2 clinical trial [25] and a phase 3 clinical trial with
data re-interpretation (Additional file 1: Figure S11)
[26]. This study shows that simple analysis can pro-
duce many false positive hits to hamper biomarker
discovery, especially when a drug target is unknown
or there are off-target effects, while the more sophis-
ticated LMM method can be superior in biomarker
discovery.

Mechanism of action study in MCTs
MCTs are used for drug efficacy evaluation and bio-
marker discovery, the latter can be facilitated by a better
understanding of a drug’s mechanism of action (MoA),
which helps identify relevant genes, pathways and gene
sets, and remove false positive genes that could have
higher statistical significance, i.e. lower p-values, in some
analysis. Biomarkers constructed from genes selected
this way have explicit biological relevance and oftentimes
are preferred.
With the readily available genomic and efficacy data

from a MCT, MoA studies can be readily performed.
Like in biomarker discovery, simple categorical and con-
tinuous endpoints, as a gross summery of efficacy, have
various drawbacks. For example, the 4 categorical
methods only measure efficacy in drug treatment group,
ignoring the relative drug-to-vehicle efficacy. RTV ratio
and TGI are dependent on calculation day and tumor
growth rate (Additional file 1: Figure S12). Again, we
can use LMM for a better study of MoA, as shown by
the example below.
Irinotecan is a DNA topoisomerase I inhibitor that in-

terrupts cell cycle in the S-phase by irreversibly arresting
the replication fork, therefore causing cell death [27].
We conducted a MCT for 16 PDXs (Additional file 1:
Figure S13), each PDX with 3 to 10 mice. We modeled
the effect of gene expression on drug efficacy by a LMM

Table 1 Parameters estimated for the LMM (Eq. 3) of the
cisplatin dataset

Fixed-Effect Parameters Estimate* p-value

β0 (Intercept) 5.2641 (0.0257) 0

β1 (Day) 0.0605 (0.0043) 1.5E-43

β2 (Day × CancerTypeGA) 0.0091 (0.0055) 0.098

β3 (Day × CancerTypeLU) 0.0297 (0.0071) 2.8E-5

β4 (Day × Treatment) −0.0282 (0.0031) 1.2E-19

β5 (Day × CancerTypeGA × Treatment) 0.0037 (0.0039) 0.35

β6 (Day × CancerTypeLU × Treatment) −0.0011 (0.0052) 0.84

*parameters estimated by the REML method in the R nlme package
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(Eq. 6). Top ranked genes were highly enriched for the
cell cycle pathway R-HSA-160170 in the Reactome 2016
database (Fig. 5c), and for DNA replication initiation

(Gene Ontology annotation GO: 0006270) (Fig. 5d),
which perfectly reveals the MoA for irinotecan. A highly
connected protein-protein interaction network for cell

Fig. 4 Survival analysis in a cisplatin MCT. (a) The median progression free survival (PFS) times of PDXs under cisplatin and vehicle treatment are
highly correlated. The dotted line is the linear regression lines, and the solid line is a line with unit slope. (b) The first frailty term ui in Eq. 5 is
positively correlated with the tumor growth rate kc. (c) Survival curves under cisplatin and vehicle treatments. Additive frailty model gives more
accurate hazard ratio (HR) than the Cox proportional hazards model whose estimation is 0.36 (95% CI: 0.28–0.46). (d) Statistical power curves at
significance level α = 0.05 when the hazard ratio is 0.9 to 0.1 for the survival analysis. The 10 colored curves in each graph denote the number of
mice per PDX per arm
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cycle is also identified from the 100 top ranked genes
(Fig. 5e). In contrast, endpoint based methods are far
less insightful (Fig. 5c-d, Additional file 1: Table S2-S4).

MCTs can explain paradoxical clinical trial results
Conflicting clinical trial reports exist regarding the role
of ERCC1 expression in predicting cisplatin treatment
on gastric cancer: some claimed that patients benefit
more from low ERCC1 expression [28–32], some stated
the opposite [33–35], while still others found no connec-
tion at all [36].

In a previous section, we described a cisplatin MCT which
included 21 gastric cancer PDXs. We fit the tumor volume
data by Eq. 6. Parameter β2 quantifies how ERCC1 expres-
sion affects tumor growth when there is no drug interven-
tion, as seen from the vehicle growth curves (Fig. 5f).
Parameter β4 evaluates how ERCC1 expression impacts cis-
platin’s efficacy on tumor growth, as seen by comparing the
cisplatin growth curves with corresponding vehicle growth
curves. These two parameters are at comparable magnitude
but with opposite signs (β2 = − 0.0155 and β4 = 0.0136).
Therefore, when ERCC1 expression gets higher, tumor grows

Fig. 5 Biomarker discovery and MoA study in MCTs. (a-b): A MCT of 27 gastric cancer PDXs treated with cetuximab. EGFR is ranked 157th among
all genes based on Spearman rank correlation between EGFR expression and TGI (a), but is the top gene in predicting cetuximab efficacy based
on a linear mixed model (LMM) (b). (c-e): A MCT of 16 PDXs treated with intraperitoneal injection of Irinotecan (100mg/kg, once per week for 2
to 3 weeks). (c): R-HAS-160170, the cell cycle pathway in Reactome2016 database, is consistently ranked as the most enriched pathway with 100
to 2000 top genes selected by a LMM, superior to top genes selected by methods based on categorical endpoints (e.g., RECIST, Table S2) and
continuous endpoints (e.g., TGI). (d): DNA replication initiation (GO: 0006270) is the most enriched GO term based on top genes selected by the
LMM. (e): A highly enriched protein-protein interaction network (p-value< 10− 16) consisted of 23 genes in the top 100 genes selected by the
LMM. Red-colored nodes are ones involved in cell cycle (GO: 0007049). Dashed horizontal lines in (c-d) denotes p-value = 0.01. (f): Mean tumor
growth curves for PDXs with highest and lowest ERCC1 mRNA expression in a MCT of 21 gastric PDXs treated by cisplatin
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slower, but the benefit of cisplatin treatment is smaller as
well (Fig. 5f).
In a clinical trial, patients with low/negative ERCC1

expression would have worse prognosis if they were
not treated, and they could benefit more from cis-
platin treatment. With treatment, their prognosis is
improved, but whether it is better than the prognosis
of ERCC1 high/positive patients is undetermined and
depends on the trial population, hence we saw con-
flicting study conclusions.

Discussion
MCTs are population-based efficacy trials mimicking hu-
man trials. Multiple mice are usually used per mouse
model per arm to improve accuracy of efficacy measure-
ment. For example, Bertotti et al. used 6 mice per PDX
per arm in a two-arm MCT with 85 colorectal cancer
PDXs to identify HER2 as a therapeutic target in
Cetuximab-resistant colorectal cancers [11]. It may also
be feasible to use one mouse per model per arm when
there is a large number of mouse models, which com-
pensate the loss of measurement accuracy on individual
mice [6, 8, 37, 38]. Caution must be exercised to use this
approach though, when the number of mouse models is
small, or high measurement accuracy of individual
mouse models is mandated, or response varies greatly
among mice of same mouse models, as commonly ob-
served for immunotherapeutic agents on syngeneic
models. Syngeneic models, unlike PDX or CDX that are
immunodeficient mouse tumor models, have intact im-
mune system, which likely is the source for large vari-
ation of drug response among mice within a syngeneic
model, because individual mice can vary greatly in
tumor immunity including the levels of T-cell infiltra-
tion, Th1 cytokine expression, and immunogenicity [39].
Our study established theoretic foundations for the de-

sign and analysis of MCTs. We first investigated tumor
growth kinetics. Many complex mathematical models
were used to describe tumor growth [40], but might not
be particularly advantageous at the expense of more pa-
rameters and the need of more data points for model fit-
ting. The exponential growth model is simple,
interpretable and linear after a logarithmic transform-
ation, and was shown to be adequate in most cases.
Consequently, LMMs can describe nearly all MCTs,
using quadratic terms of time if necessary.
We introduced additive frailty models to perform sur-

vival analysis for MCTs. The definition of PFS/OS can
vary. For example, OS can be defined same as in human
trials for leukemia PDXs [8]. For both LMMs and frailty
models, we performed power simulations that give con-
crete recommendations on trial design. In particular, we
answered the frequently asked questions, from a statis-
tical perspective, on how many mouse models and how

many mice per model to use, with flexible combination
of the two numbers. We emphasize that it is equally im-
portant to consider the purpose of MCTs, e.g., bio-
marker discovery versus biomarker validation, in the
study design, and designs with more PDX but fewer
mice per PDX (e.g. 1:1 design) have better representation
of inter-tumor heterogeneity than ones with fewer PDX
but more mice per PDX (e.g., 3:3 design), but the latter
gives more accurate measurement of drug efficacy.
MCTs can be asymmetric, i.e., unequal numbers of mice
in arms. LMMs and frailty models are flexible for covari-
ates, for example, a fixed effect for site can be incorpo-
rated if a MCT is conducted at multiple sites.

Conclusions
In conclusion, methods proposed in this study make the
design and analysis of MCTs more rational, flexible and
powerful when mouse tumor models are used in oncol-
ogy research and drug development.
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Additional file 1: Figure S1. Mouse number and measurement
accuracy of categorical responses defined by the RECIST criteria. Figure
S2. Mouse number and measurement accuracy of categorical responses
defined by the 3-cat criterion. Figure S3. Mouse number and measure-
ment accuracy of categorical responses defined by the 5-cat criterion.
Figure S4. A unique treatment model classified as PD by mRECIST
method, though tumor completely disappeared at end of study. Figure
S5. AUC ratio as a continuous metric for MCTs. Figure S6. (a) Distribution
of coefficient of determination between log-transformed tumor volume
and day for PDX mice under vehicle treatment. Figure S7. Growth curves
of 42 PDXs under vehicle treatment (a) and cisplatin treatment (b). Fig-
ure S8. Fitting diagnostics of the linear mixed model in Eq. 3 for the cis-
platin MCT dataset (cf. Fig. S7). Figure S9. Tumor volume doubling time
in PDXs for 10 cancers. Figure S10. Growth curves of 27 PDXs under (a)
vehicle treatment and (b) cetuximab treatment (1 mg/mouse, intraperito-
neal injection, once per week). Figure S11. In the EXPAND phase III trial
(1), for patients with IHC score greater than ~ 200, the 7 patients receiv-
ing cetuximab in addition to had significantly longer (a) PFS and (b) OS
than the 19 patients receiving only chemotherapies. Figure S12. TGI is a
growth rate biased and time-dependent efficacy metric. Figure S13.
Growth curves of 16 PDXs under (a) vehicle treatment and (b) Irinotecan
treatment (100 mg/kg, intraperitoneal injection, once per week for 2–3
weeks. Table S1. Objective response rate (ORR) in 4 categorizing
methods.
Table S2. Irinotecan response of 16 PDX models by 4 categorical end-
point methods. Table S3. Most enrichment pathways in Reactome 2016
database for the Irinotecan MCT. Table S4. Most enrichment terms in GO
Biological Processes for the Irinotecan MCT. (PDF 2790 kb)
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