

Understanding the Mechanistic Actions & Development of IL-15Rβγ agonist SO-C101 (RLI-15)

Irena Adkins

Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University Prague;

Sotio a.s, Prague

adkins@sotio.com

 \cap

Level of IL-15 tumor expression impacts

IL-15 is the only cytokine with a significant impact on survival, underlining the major role of IL-15 in human anti-cancer immunity

Mlecr	nik <i>et al</i> .,	Sci. Tra	nsl. Med	. 2014 M	ar 19; 6(228) Vol.	6, Issue	228, pp.	228ra37	,									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
								\$	STRICTLY CO	ONFIDENTIA	L								:

IL-15Ra trans-presentation by antigen presenting cells is a prerequisite for proper engagement of IL15R $\beta\gamma$ on NK cells and T cells by IL-15

SO-C101 (RLI-15) ensures optimal IL-15 signaling in NK cells and CD8⁺ T cells in the absence of IL-15Rα trans-presentation

Specific targeting of IL-2/IL-15Rβγ by SO-C101 is critical for solution the stimulation of anticancer immunity and safety

Ongoing SO-C101 phase 1/1b bifurcated trial design Sotio

MEMBER OF PPF GROUP

Accelerated dose finding in combination with pembrolizumab

N, number; CPI, checkpoint inhibition; R/R, relapsed/refractory; MTD, maximum tolerated dose; RP2D, recommended phase II dose

 \bigcirc

0

0

0

 \bigcirc

0

0

0

0

PHASE I CENTRES	STATUS				
Dr. Patricia LoRusso. Yale Cancer Center, New Haven, CT	Drug well-tolerated				
Dr. Filip Janku, MD Anderson Cancer Center , Houston, TX	Recruitment into 7th dose level of Part A completed				
Dr. Aurélien Marabelle, Institut Gustave Roussy, FR	Dose level 7 – 15 µg/kg – was defined as MTD				
Dr. Elena Garralda, Vall d'Hebron , SP	Dose level at 12 µg/kg will be tested				
	Recruitment into 3rd level of Part B combo with pembro ongoing Average SO-C101 doses administered = 8				
	Observed PD activity is consistent with preclinical data				

 \cap

0

0

 \bigcirc

 \cap

 \cap

SOTIO prezentace 12.04.2021 6

 \bigcirc

 \cap

Syngeneic mouse with mouse tumors

 \bigcirc

- Mouse tumor cell lines
- T cell-based models (MC38, CT26)
- NK-cell-based models (RENCA, TC-1, TRAMP-C2)
- monotherapy or

MEMBER OF PPF GROU

Combination with anti-PD-1 mAb

Mouse with partial or fully competent immune system

 \bigcirc

STRICTLY CONFIDENTIAL

Syngeneic mouse with mouse tumors

• NK cell-based models (monotherapy)

lung metastases (Day 16)

Control

Syngeneic mouse with mouse tumors

• NK cell-based models (combination with anti-PD-1)

Early treatment with SO-C101/anti-PD-1 mAb combination decreases tumor growth and increases the number of tumor-free mice compared to both single agent effects Ο

Syngeneic mouse with mouse tumors

Dosing

0

 \cap

0

SO-C101 (2 μ g/injection) twice per week from day 13 - 37 anti-PD1 (250 μ g, day 9,12 and 15)

0

0

SO-C101/anti-PD-1mAb combination significantly decreases tumor growth and increases complete remission rate and long-term survival

Desbois et al. J Immunol July 1, 2016, 197 (1) 168-178.

 \cap

0

0

0

 \bigcirc

0

0

0

0

0

 \bigcirc

Syngeneic mouse with mouse tumors	 Mouse tumor cell lines T cell-based models (MC38, CT26) NK-cell-based models (RENCA, TC-1, TRAMP-C2) 	 monotherapy or Combination with anti-PD-1 mAb
Partially immunodeficient with human xenografts	 Human tumor cell lines (RPMI 8226) NK, NKT cell-based models 	 monotherapy or Combination with anti-CD38 mAb

Mouse with partial or fully competent immune system

 \cap

STRICTLY CONFIDENTIAL

Partially immunodeficient with human xenografts

0

0

0

0

- Human tumor cell lines (RPMI 8226)
- NK, NKT cell-based models

monotherapy or

 Combination with anti-CD38 mAb

Efficacy 2500 RPMI8226 Tumor Model Protocol Tumor volume (mm³) 2000-**RPMI 8226** 1*10⁷ 1500-RLI-15 s.c. CB17 SCID Monitoring of tumor 1000size and survival Day: • 500-0 Randomization Daratumumab i.p. Tumor volume~ 100 mm³ 10 20 30 40 0 Days Control SO-C101 Mechanism of action might not reflect fully functional • Daratumumab immune system SO-C101 + Daratumumab

ADCC mechanism varies between mouse and human

0

0

hIgG1 via FcRγIV – ADCP, FcRγIV not in mouse NK cells

0

0

 \cap

0

0

0

0

0

0

0

Syngeneic mouse with mouse tumors	 Mouse tumor cell lines T cell-based models (MC38, CT26) NK-cell-based models (RENCA, TC-1, TRAMP-C2) 	 monotherapy or Combination with anti-PD-1 mAb
Partially immunodeficient with human xenografts	 Human tumor cell lines (RPMI 8226) NK, NKT cell-based models 	 monotherapy or Combination with anti-CD38 mAb
Immunodeficient mouse with human xenografts and hPBMC	• Human tumor cell lines (A549)	• monotherapy

Mouse with partial or fully competent immune system

 \cap

STRICTLY CONFIDENTIAL

Immunodeficient mouse with human xenografts and hPBMC

· Human tumor cell lines (A549, Daudi)

A549 Tumor Model Protocol

Tumor cell implantation Day 0 PBMC transferred i.p 2h post inoculation Treatment on Day 2, NCG; 3 donors/3 mice 6h between administrations

Efficacy

Syngeneic mouse with mouse tumors	 Mouse tumor cell lines T cell-based models (MC38, CT26) NK-cell-based models (RENCA, TC-1, TRAMP-C2) 	 monotherapy or Combination with anti-PD-1 mAb 			
Partially immunodeficient mouse with human xenografts	 Human tumor cell lines (RPMI 8226) NK, NKT cell-based models 	 monotherapy or Combination with anti-CD38 mAb 			
Immunodeficient mouse with human xenografts and hPBMC	• Human tumor cell lines (A549)	monotherapy			
Syngeneic mouse with mouse tumors and human antigen	 Mouse tumor cell line carrying human antigen Transgenic mouse (hPD-1) 	monotherapy			
Mouse with partial or fully competent immune system					

 \bigcirc

Syngeneic mouse with mouse tumors and human antigen

0

0

- · Mouse tumor cell line carrying human antigen
- Transgenic mouse (hPD-1)

MC38-CEA is more immunogenic than MC38, but the tumor growth remains the same

days

Syngeneic mouse with mouse tumors and human antigen

- Mouse tumor cell line carrying human antigen
- Transgenic mouse (hPD-1)

MC38-hPD-L1 in hPD-1 transgenic mouse

Randomization at ~100 mm³ Followed by RLI-15 treatment 8 mice/group 6h between administrations in 2x3Dx0.5 mg/kg

	benefits	limitations
Syngeneic mouse with mouse tumors	 Fully competent immune system good for proof-of-concept of preclinical studies, mechanistical concepts often translatable to humans 	 lack of cross-reactivity for testing IO drugs targeting human antigen Mechanistical interpretation difficult in some cases e.g ADCC
Partially immunodeficient mouse with human xenografts	 Often retained innate immunity compartment (NK, NKT) Engraftment of human CDX or PDX 	 Anti-tumor efficacy mechanisms might not reflect fully competent immune system anti-tumor actions Mechanistical interpretation
Immunodeficient mouse with human xenografts and hPBMC	 Human immune system (full or partial) Engraftment of human CDX or PDX 	 Short-term models due to GvH Donor variability Limited human cell populations
Syngeneic mouse with mouse tumors and human antigen	 Human target antigen in fully immunocompetent mice Testing of human-targeted IO compounds 	 Xenoantigen highly immunogenic High immunogenicity baseline Risk of exacerbation of the tumor growth Price (transgenic mice)

Just because the models are imperfect..... it does not mean they are wrong.....

Bob Weinberg

Thanks to:

STRICTLY CONFIDENTIAL

 \cap

 \bigcirc

0

0

0

0

Ο

0

0

 \cap

0

0

 \bigcirc

0

0

0

0

0

20