CrownSyn[™] Service

Fixed Ratio Design Application Guide

Combination therapies are an increasingly important treatment modality for several complex conditions including cancer. To make it easier for researchers to evaluate and quantify two-drug combination effects (synergistic, antagonistic, and additive) for *in vitro* cell-based assays, CrownBio has built a bioinformatics service, CrownSyn.

This application guide demonstrates how the CrownSyn service is applied to drug combination studies following a Fixed Ratio Design.

Fixed Ratio Design Principle

In this experiment, efficacy is measured by percent inhibition of cancer cell proliferation for two drugs individually, and in combination for a series of concentrations. In the combination treatment, the concentration ratio of the two drugs is fixed. Dose-response data, as shown in **Table 1**, are the input data used by the CrownSyn service to evaluate combination effects.

Table 1: Dose-Response Data for Drug A, B, and the Combination of Drugs A and B (Combo). Percent cancer cell proliferation inhibition is provided as a measure of efficacy.

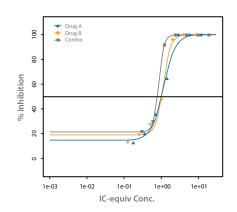
Drug	Drug A Concentration (nM)	Drug B Concentration (nM)	% Inhibition
A	40	0	100.00
A	20	0	100.00
A	10	0	99.96
А	5	0	64.41
А	2.5	0	35.61
А	1.25	0	20.03
А	0.625	0	12.54
В	0	40	100.00
В	0	20	99.94
В	0	10	96.32
В	0	5	48.10
В	0	2.5	27.99
В	0	1.25	19.71
В	0	0.625	13.43
Combo	40	40	100.00
Combo	20	20	99.99
Combo	10	10	99.97
Combo	5	5	99.93
Combo	2.5	2.5	91.60
Combo	1.25	1.25	29.97
Combo	0.625	0.625	21.66

CrownSyn Service

Fixed Ratio Design Application Guide

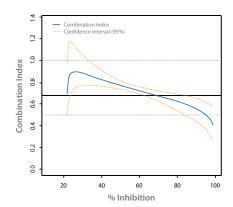
Methods and Results

The combination index (CI) is calculated based on the IC_{50} equivalence method (Zhao et al).


The combination effect is readily visualized by examining the shift of the combination curve with respect to the two individual drug curves:

- A left shift indicates a synergistic effect (as shown in **Figure 1**)
- A right shift means an antagonistic effect
- No shift means an additive effect.

To further characterize combination effects, the CrownSyn service generates the CI, along with its 95% confidence interval, which is plotted against efficacy (% cancer cell proliferation inhibition) of the combination treatment (**Figure 2**).


Figure 1: Resulting Dose-Response Curves using IC₅₀-Normalized Drug Concentrations.

Three individual curves are displayed together to show the response for Drug A, Drug B, and the Drug A and B combination (Combo).

Figure 2: Combination Treatment Combination Index vs Efficacy.

Drug A and B CI and 95% confidence interval shown against percent cancer cell proliferation inhibition for the combination treatment.

Conclusions

Drug A and B work synergistically to inhibit cancer cell proliferation, with the synergistic effect becoming stronger with increased concentrations of Drug A and Drug B. Downstream pharmacology analysis should therefore be conducted to further understand the dosing parameters, safety, and efficacy of the combination therapy.

Acknowledgements

He *et al.* (2018) Methods for High-throughput Drug Combination Screening and Synergy Scoring. In: von Stechow L. (eds) Cancer Systems Biology. Methods in Molecular Biology, vol 1711. Humana Press, New York, NY.

Zhao et al. Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clinical Cancer Research 2004;10(23):7994-8004.

