

Unlock the Power of 3D Bone Marrow Niche Models

At Crown Bioscience, we provide cutting-edge 3D bone marrow niche (BMN) *in vitro* models to advance hematological cancer research. These models accurately recapitulate the tumor microenvironment, offering a physiologically relevant system to study tumor progression, drug response, and immune interactions.

- Clinically Relevant Tumor Modeling Assay therapy response in a physiologically relevant platform where patient-derived tumor cells proliferate, mimicking *in vivo* behavior.
- Enhanced Translational Insights Leverage multi-modal analysis, including advanced imaging, to identify clinically relevant biomarkers and assess niche response for potential off-target effects.
- Accelerated & Scalable Drug Testing Achieve faster timelines and higher throughput than *in vivo* models, with the potential to pre-screen PDX models *in vitro*.
- Expanded Capabilities for Immuno-Oncology (IO) Studies Explore IO applications with the ability to incorporate immune components for a more comprehensive assessment.
- Access to High-Quality Patient-Derived Material Utilize well-characterized tissue banks
 to support follow-up studies and deepen understanding of promising therapeutic leads.

Revolutionize Your Research with the Right Microenvironment

Breakthrough discoveries start with a strong foundation. Our 3D bone marrow niche models replicate the complexity of the human bone marrow to give you more reliable and predictive results.

Cellular Composition

A dynamic mix of hematopoietic stem and progenitor cells, stromal cells, endothelial, and immune cells for a lifelike research environment

Mechanical & Biophysical Cues

Fine-tuned stiffness, matrix composition, and signaling cues to mimic the dynamic nature of the bone marrow niche.

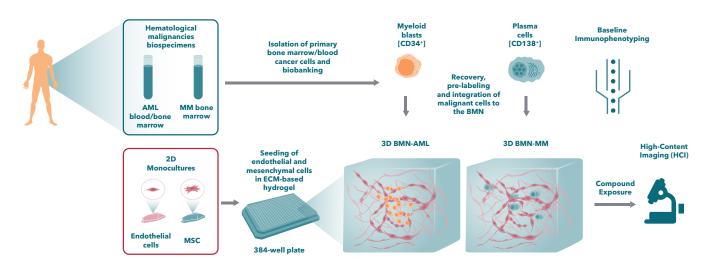
Pre-vascularization

Mesenchymal and endothelial cells form networks that contain key characteristics of pre-vascularization.

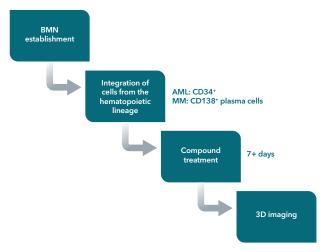
Optimized Structural Support

Engineered scaffolds that provide a physiologically relevant 3D architecture for enhanced cell adhesion and function.

Niche Critical Growth Factors


Physiologically relevant growth factors that enhance cell signaling paracrine action and disease modeling.

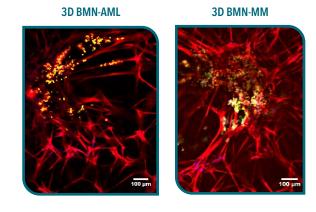
Immune System Integration


Incorporating key immune cell populations to better replicate tumorimmune interactions and enhance translational relevance

Overview of Bone Marrow Niche Model

Versatility of the BMN Platform

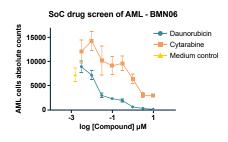
- A reliable patient-derived hemato-oncology system available for hematological malignancies:
 - Integrate matching patient biospecimens (bone marrow, whole blood, tumor cells and immune cells) to avoid allogeneic responses.
 - Provides endothelial and mesenchymal cell compartments, as well as stiffness to favor vascularization and support for cells of the hematopoietic lineage.
 - Hematopoietic cells can be selected according to the biological question and indication.
 - Patient-specific plate patient primary cells directly seeded on top of the BMN in a 384-well plate format.
 - Possibility to integrate autologous immune cells.
- Drug effects can be measured by phenotypic high content imaging (HCI) analysis.

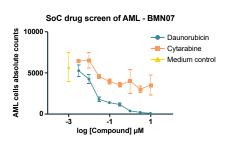


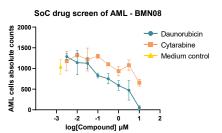
Average timeline for a full study: 6-8 weeks upon compound arrival

Standard of Care (SoC) drug sensitivity

Patient ID	% Blasts	Immunophenotype	Treatment
AML-BMN06	BM:25% PB:19%	CD45+/-, CD34+/-, CD117+, HLA-DR+, MPO+low, CD14+, CD13+, CD33+	VenAza
AML-BMN07	BM:80% PB:70%	CD45+, CD34+, CD33+, MPO+, CD117+, HLA-DR+, CD13+, CD14+	Naive
AML-BMN08	BM:75% PB:36%	CD45+, MPO+, CD34+, CD117+, HLA DR+, CD13+, CD33+, CD64-, CD38+, CD71+	Naive

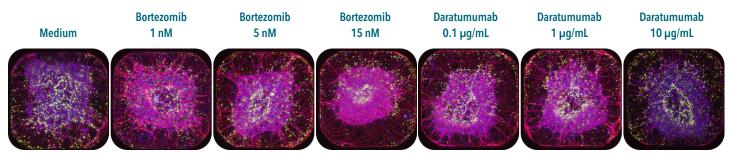

High-content imaging examples of cancer cells adhering to microenvironment




AML-BMN07
Daunorubicin (3.162 μM)

Cytarabine (3.162 μM)

Cell Tracker™ Green | DAPI | Actin



Advance Your Research with Best-in-Class Assays

- High-Throughput Assays: Conduct robust assays in a 384-well plate format for maximum efficiency.
- Diverse Assays Capabilities: Leverage HCl alongside phenotyping using flow cytometry, immnoflourescence assays, single-cell RNA sequencing, and more.
- Immune-Competent Assays: Incorporate immune components to evaluate IO therapies in a relevant microenvironment.
- Cell Adhesion-Mediated Drug Resistance (CAM-DR) Modeling: Investigate tumor-microenvironment interactions and their role in therapy resistance to optimize drug efficacy strategies.

3D BMN	screening options	Readouts for Hematological Malignancies	
	3D BMN drug screening	Assessment of drug sensitivity by HCI	
Standard	Baseline immunophenotyping	Flow cytometry analysis	
	Patient selection	Detailed patient data and information on previous treatment	
	3D BMN off-target screening	Assessment of drug sensitivity by HCI	
Optional	3D BMN supernatant	Cytokine analysis from individual replicates	
·	Target validation	3D Immunofluorescence	
	Target validation	RNA-seq analysis	

Representative Multiple Myeloma Bone Marrow Niche Models

Nuclei | Actin | CD138+

Seamless Transition from In Vitro to In Vivo to Clinical Trials

We offer a fully integrated platform that enables a smooth progression of research from early discovery to translational studies:

- Patient-Derived Biobanks Well characterized patient tissue containing patient demographics, genomics and treatment history forms the foundation for meaningful studies.
- 3D Bone Marrow Niche Models In vitro platforms that mimic the native bone marrow environment, preserving tumor viability and allowing for robust drug screening and biomarker discovery.
- PDX Models Patient-derived xenograft (PDX) models provide a predictive in vivo system to validate therapeutic efficacy.
- Comprehensive Biomarker Analysis In-depth characterization of drug response and resistance mechanisms through multi-omics and advanced analytics.

Preclinical Models Biomarker Analysis in Preclinical Studies Cell line Pharmacology Pharmacology Syngeneic model/ mouse homograft PDX/CDX Immunology Spatial Biology Proteomics Proteomics Proteomics Proteomics Proteomics

Get in touch

US: +1 858 622 2900 **UK:** +44 (0)1530 234871

busdev@crownbio.com www.crownbio.com

Scan to Learn More

